Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 94
Filter
1.
Front Plant Sci ; 15: 1353352, 2024.
Article in English | MEDLINE | ID: mdl-38689842

ABSTRACT

Among tropical fruit trees, coconut holds significant edible and economic importance. The natural growth of coconuts faces a challenge in the form of low temperatures, which is a crucial factor among adverse environmental stresses impacting their geographical distribution. Hence, it is essential to enhance our comprehension of the molecular mechanisms through which cold stress influences various coconut varieties. We employed analyses of leaf growth morphology and physiological traits to examine how coconuts respond to low temperatures over 2-hour, 8-hour, 2-day, and 7-day intervals. Additionally, we performed transcriptome and metabolome analyses to identify the molecular and physiological shifts in two coconut varieties displaying distinct sensitivities to the cold stress. As the length of cold stress extended, there was a prominent escalation within the soluble protein (SP), proline (Pro) concentrations, the activity of peroxidase (POD) and superoxide dismutase (SOD) in the leaves. Contrariwise, the activity of glutathione peroxidase (GSH) underwent a substantial reduction during this period. The widespread analysis of metabolome and transcriptome disclosed a nexus of genes and metabolites intricately cold stress were chiefly involved in pathways centered around amino acid, flavonoid, carbohydrate and lipid metabolism. We perceived several stress-responsive metabolites, such as flavonoids, carbohydrates, lipids, and amino acids, which unveiled considerably, lower in the genotype subtle to cold stress. Furthermore, we uncovered pivotal genes in the amino acid biosynthesis, antioxidant system and flavonoid biosynthesis pathway that presented down-regulation in coconut varieties sensitive to cold stress. This study broadly enriches our contemporary perception of the molecular machinery that contributes to altering levels of cold stress tolerance amid coconut genotypes. It also unlocks several unique prospects for exploration in the areas of breeding or engineering, aiming to identifying tolerant and/or sensitive coconut varieties encompassing multi-omics layers in response to cold stress conditions.

2.
Rheumatol Adv Pract ; 8(2): rkae038, 2024.
Article in English | MEDLINE | ID: mdl-38605731

ABSTRACT

Objectives: Central nervous system vasculitis (CNSV) is a rare disease. High-resolution vessel wall imaging (HR-VWI) enables the identification of inflammatory changes within the vessel wall. Few studies have applied HR-VWI to assess CNSV in children. This study delves into the utility of HR-VWI for diagnosing and treating CNSV in children, with the aim of enhancing clinical diagnosis and efficacy evaluation. Methods: Imaging data were acquired from children who underwent HR-VWI examinations. The study meticulously analysed clinical data and laboratory tests to discern the characteristics and distribution patterns of diverse vasculitis forms. Results: In children, CNSV mainly involves medium vessels with grade 1 and 2 stenosis (grade 4 stenosis is rare), and the imaging features generally show centripetal and moderate enhancement, suggesting that this feature is specific for the diagnosis of CNSV. High-grade stenosis, concentric enhancement and strong enhancement of the vasculature indicate more severe disease activity. Remarkably, HR-VWI proved to be significantly more sensitive than magnetic resonance angiography in detecting CNSV. Among the 13 cases subjected to imaging review, 8 demonstrated a reduction or resolution of vessel wall inflammation. In contrast, five patients exhibited worsening inflammation in the vessel wall. HR-VWI demonstrated that changes in vessel wall inflammation were closely correlated with changes in brain parenchymal lesions and symptoms. Conclusion: This study underscores the diagnostic value of HR-VWI in CNSV assessment and treatment monitoring, offering a quantitative evaluation of CNSV in children.

3.
J Inflamm Res ; 17: 1577-1587, 2024.
Article in English | MEDLINE | ID: mdl-38495342

ABSTRACT

Purpose: Surgery impairs immune function and increases postoperative complications. B7H3, a co-stimulatory molecule, plays a crucial role in immune regulation. The present study examined the impact of B7H3 on the postoperative immune response in children with acute suppurative appendicitis (ASA) by comparing preoperative and postoperative B7H3 levels in laparoscopic surgery (LA) and open appendectomy (OA). Patients and Methods: 198 pediatric ASA patients were enrolled. The researcher group performed LA, while the control group performed OA. Perioperative time, recovery time of gastrointestinal function, time to pass gas, length of incision, and length of hospitalization were compared in the perioperative period. Additionally, an ELISA assay was conducted to examine the levels of inflammatory factors and B7H3 and CD28. Short-term postoperative complications were also evaluated. Results: Compared with the control group, the research group had a short operative time, gastrointestinal function recovery time, gas time, and hospitalization time. The short-term complication rate was significantly lower in the research group. More importantly, B7H3 and CD28 were insignificantly different preoperatively, but they were all reduced postoperatively. Moreover, the reduction was more pronounced in the research group. The same results were noted in inflammatory factors and immune markers, which were non-significant different preoperatively and were typically reduced postoperatively, particularly in the research group. Finally, postoperative B7H3 was positively correlated with both inflammatory factors and immune cell levels. Conclusion: B7H3 was reduced in both postoperative periods, and the reduction was more pronounced in the LA group. B7H3 may be involved in postoperative recovery by modulating postoperative inflammation and immune responses.

4.
BMC Neurol ; 24(1): 97, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38494491

ABSTRACT

OBJECTIVE: To investigate the factors associated with brain frailty and the effect of brain frailty in patients with anterior circulation large artery occlusion (AC-LAO). METHODS: 1100 patients with AC-LVO consecutively admitted to the Second Hospital of Hebei Medical University, North China between June 2016 and April 2018 were retrospectively analyzed. The variables associated with brain frailty and stroke outcome were analyzed by ANOVA analysis, the Mann-Whitney U test and multiple linear regression. Based on previous research. Brain frailty score comprises 1 point each for white matter hyperintensity (WMH), old infarction lesions, and cerebral atrophy among 983 participants with baseline brain magnetic resonance imaging or computed tomography. RESULTS: Among AC-LAO participants, baseline brain frailty score ≥ 1 was common (750/983, 76.3%). Duration of hypertension > 5 years (mean difference [MD] 0.236, 95% CI 0.077, 0.395, p = 0.004), multiple vessel occlusion (MD 0.339, 95% CI 0.068, 0.611, p = 0.014) and basal ganglia infarction (MD -0.308, 95% CI -0.456, -0.160, p < 0.001) were independently associated with brain frailty score. Brain frailty score was independently associated with stroke events, and higher brain frailty scores were associated with higher rates of stroke events (p < 0.001). However, brain frailty has no independent effect on short-term outcome of ACI in AC-LAO patients. CONCLUSIONS: In AC-LAO patients, older age, duration of hypertension > 5 years, and multiple vessel occlusion influenced the brain frailty score. Brain frailty score was independently associated with the occurrence of stroke events in AC-LAO patients.


Subject(s)
Brain Ischemia , Frailty , Hypertension , Stroke , Humans , Retrospective Studies , Frailty/complications , Frailty/epidemiology , Stroke/complications , Stroke/epidemiology , Brain , Arteries , Infarction
5.
Neuroreport ; 35(7): 431-438, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38526971

ABSTRACT

This study aimed to assess the effects of human urinary kallidinogenase (HUK) on motor function outcome and corticospinal tract recovery in patients with acute ischemic stroke (AIS). This study was a randomized, controlled, single-blinded trial. Eighty AIS patients were split into two groups: the HUK and control groups. The HUK group was administered HUK and standard treatment, while the control group received standard treatment only. At admission and discharge, the National Institutes of Health Stroke Scale (NIHSS), Barthel Index (BI) and muscle strength were scored. The primary endpoint was the short-term outcomes of AIS patients under different treatments. The secondary endpoint was the degree of corticospinal tract fiber damage under different treatments. There was a significant improvement in the NIHSS Scale, BI and muscle strength scores in the HUK group compared with controls (Mann-Whitney U test; P  < 0.05). Diffusion tensor tractography classification and intracranial arterial stenosis were independent predictors of short-term recovery by linear regression analysis. The changes in fractional anisotropy (FA) and apparent diffusion coefficient (ADC) decline rate were significantly smaller in the HUK group than in the control group ( P <  0.05). Vascular endothelial growth factor (VEGF) increased significantly after HUK treatment ( P  < 0.05), and the VEGF change was negatively correlated with changes in ADC. HUK is beneficial for the outcome in AIS patients especially in motor function recovery. It may have protective effects on the corticospinal tract which is reflected by the reduction in the FA and ADC decline rates and increased VEGF expression. The study was registered on ClinicalTrials.gov (unique identifier: NCT04102956).


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Humans , Ischemic Stroke/complications , Vascular Endothelial Growth Factor A , Stroke/drug therapy , Stroke/complications , Brain Ischemia/diagnostic imaging , Brain Ischemia/drug therapy , Brain Ischemia/complications , Pyramidal Tracts/diagnostic imaging , Tissue Kallikreins
6.
Medicine (Baltimore) ; 103(7): e35725, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38363932

ABSTRACT

It aims to study the diagnostic effect of procalcitonin (PCT) and red blood cell distribution width (RDW) in premature septicemia (PS), and to analyze the prognostic evaluation value of PCT and RDW in PS. Ninety eight septicemia premature infants (SPI) who visited the neonatal intensive care unit of our hospital from June 2019 to July 2021 were selected and met the criteria. Based on the patient's condition and the neonatal shock score, they were separated into a severe group (SG) and a mild group (MG). There were 43 children and 55 children in the 2 groups, respectively. According to the survival status of SPI after 3 days of treatment, they were divided into a death group and a SG. It detected and analyzed the peripheral venous blood of SPI before treatment (BT) and after treatment (AT), and observed the changes of PCT and RDW. The comparison of general data between severe and mild SPI and their mothers did not have statistical significance (P > .05). The PCT of the SG was higher than that of the MG BT, on the 1st day and the 3rd day AT; The PCT BT and AT in both groups ranged from high to low on the 1st day and the 3rd day AT and BT (P < .05). The RDW in the SG were higher than those in the MG, and the RDW BT and AT in both groups were the highest on the 1st day AT; The RDW BT in the MG was higher than on the 3rd day AT, while the RDW BT in the SG was lower than on the 3rd day AT (P < .05). The optimal cutoff values for PCT on the 1st and 3rd day AT were 40.594ng/ml and 64.854ng/ml, respectively, with sensitivity of 100.0% and 100.0%, and specificity of 73.2% and 87.1% (P < .05). The optimal cutoff values for RDW on the 1st and 3rd day AT were 16.649% and 18.449%, respectively, with sensitivity of 100.0% and 100.0%, and specificity of 68.5% and 91.8% (P < .05). Monitoring the changes in PCT and RDW can promote the early diagnosis of PS and their prognosis evaluation.


Subject(s)
Procalcitonin , Sepsis , Infant, Newborn , Child , Humans , Prognosis , Calcitonin , Sepsis/diagnosis , Infant, Premature , Retrospective Studies , ROC Curve
7.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338758

ABSTRACT

Catalases (CATs) play crucial roles in scavenging H2O2 from reactive oxygen species, controlling the growth and development of plants. So far, genome-wide identification and characterization of CAT genes in oil palm have not been reported. In the present study, five EgCAT genes were obtained through a genome-wide identification approach. Phylogenetic analysis divided them into two subfamilies, with closer genes sharing similar structures. Gene structure and conserved motif analysis demonstrated the conserved nature of intron/exon organization and motifs among the EgCAT genes. Several cis-acting elements related to hormone, stress, and defense responses were identified in the promoter regions of EgCATs. Tissue-specific expression of EgCAT genes in five different tissues of oil palm was also revealed by heatmap analysis using the available transcriptome data. Stress-responsive expression analysis showed that five EgCAT genes were significantly expressed under cold, drought, and salinity stress conditions. Collectively, this study provided valuable information on the oil palm CAT gene family and the validated EgCAT genes can be used as potential candidates for improving abiotic stress tolerance in oil palm and other related crops.


Subject(s)
Arecaceae , Hydrogen Peroxide , Catalase/metabolism , Phylogeny , Hydrogen Peroxide/metabolism , Transcriptome , Arecaceae/genetics , Arecaceae/metabolism , Stress, Physiological/genetics , Gene Expression Regulation, Plant , Palm Oil , Plant Proteins/genetics , Plant Proteins/metabolism
8.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38338979

ABSTRACT

Oil palm, a tropical woody oil crop, is widely used in food, cosmetics, and pharmaceuticals due to its high production efficiency and economic value. Palm oil is rich in free fatty acids, polyphenols, vitamin E, and other nutrients, which are beneficial for human health when consumed appropriately. Therefore, investigating the dynamic changes in free fatty acid content at different stages of development and hypothesizing the influence of regulatory genes on free fatty acid metabolism is crucial for improving palm oil quality and accelerating industry growth. LC-MS/MS is used to analyze the composition and content of free fatty acids in the flesh after 95 days (MS1 and MT1), 125 days (MS2 and MT2), and 185 days (MS3 and MT3) of Seedless (MS) and Tenera (MT) oil palm species fruit pollination. RNA-Seq was used to analyze the expression of genes regulating free fatty acid synthesis and accumulation, with differences in genes and metabolites mapped to the KEGG pathway map using the KEGG (Kyoto encyclopedia of genes and genomes) enrichment analysis method. A metabolomics study identified 17 types of saturated and 13 types of unsaturated free fatty acids during the development of MS and MT. Transcriptomic research revealed that 10,804 significantly different expression genes were acquired in the set differential gene threshold between MS and MT. The results showed that FabB was positively correlated with the contents of three main free fatty acids (stearic acid, myristate acid, and palmitic acid) and negatively correlated with the contents of free palmitic acid in the flesh of MS and MT. ACSL and FATB were positively correlated with the contents of three main free fatty acids and negatively correlated with free myristate acid. The study reveals that the expression of key enzyme genes, FabB and FabF, may improve the synthesis of free myristate in oil palm flesh, while FabF, ACSL, and FATB genes may facilitate the production of free palmitoleic acid. These genes may also promote the synthesis of free stearic acid and palmitoleic acid in oil palm flesh. However, the FabB gene may inhibit stearic acid synthesis, while ACSL and FATB genes may hinder myristate acid production. This study provides a theoretical basis for improving palm oil quality.


Subject(s)
Arecaceae , Fatty Acids, Nonesterified , Humans , Fatty Acids, Nonesterified/metabolism , Fatty Acids/metabolism , Palm Oil , Chromatography, Liquid , Myristates/metabolism , Arecaceae/genetics , Arecaceae/metabolism , Tandem Mass Spectrometry , Fatty Acids, Unsaturated/metabolism , Palmitic Acid/metabolism , Gene Expression Profiling , Stearic Acids/metabolism , Plant Oils/metabolism
10.
Food Chem (Oxf) ; 8: 100190, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38259870

ABSTRACT

Sugar and fatty acid content are among the important factors that contribute to the intensity of flavor in aromatic coconut. Gaining a comprehensive understanding of the sugar and fatty acid metabolites in the flesh of aromatic coconuts, along with identifying the key synthetic genes, is of significant importance for improving the development of desirable character traits in these coconuts. However, the related conjoint analysis of metabolic targets and molecular synthesis mechanisms has not been carried out in aromatic coconut until now. UPLC-MS/MS combined with RNA-Seq were performed in aromatic coconut (AC) and non-aromatic coconut (NAC) meat at 7, 9 and 11 months. The results showed that D-fructose in AC coconut meat was 3.48, 2.56 and 3.45 fold higher than that in NAC coconut meat. Similarly, D-glucose in AC coconut meat was 2.48, 2.25 and 3.91 fold higher than that in NAC coconut meat. The NAC coconut meat showed a 1.22-fold rise in the content of lauric acid compared to the AC coconut meat when it reached 11 months of age. Myristic acid content in NAC coconut meat was 1.47, 1.44 and 1.13 fold higher than that in AC coconut meat. The palmitic acid content in NAC coconut meat was 1.62 and 1.34 fold higher than that in AC coconut meat. The genes SPS, GAE, GALE, GLCAK, UGE, UGDH, FBP, GMLS, PFK, GPI, RHM, ACC, FabF, FatA, FabG, and FabI exhibited a negative correlation with D-fructose (r = -0.81) and D-glucose (r = -0.99) contents, while showing a positive correlation (r = 0.85-0.96) with lauric acid and myristic acid. Furthermore, GALE, GLCAK, FBP, GMLS, and ACC displayed a positive correlation (r = 0.83-0.94) with palmitic acid content. The sugar/organic acid ratio exhibited a positive correlation with SPS, GAE, UGE, FabF, FabZ and FabI.

11.
Technol Health Care ; 2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37661900

ABSTRACT

BACKGROUND: Stroke is the second reason for global deaths and a major reason for disabilities. OBJECTIVE: To unravel the clinical value of the coagulation index and serum inflammatory cytokines in hemorrhagic stroke patients with pulmonary infection in the sequelae stage. METHODS: Altogether, 130 hemorrhagic stroke patients who received treatment in Hebei General Hospital from April 2019 to December 2020 were selected. Patients were classified into the infection group (n= 65) and non-infection group (n= 65) according to whether they had a pulmonary infection in the sequelae stage of hemorrhagic stroke. Levels of coagulation index and serum inflammatory cytokines of patients in two groups were compared. Multiple linear regression analysis was used to analyze pulmonary infection-related factors of hemorrhagic stroke patients. The diagnostic value of the coagulation index and serum inflammatory cytokines in pulmonary infection was analyzed by the receiver operating characteristic (ROC) curve. RESULTS: Prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), D-dimer (D-D), platelet (PLT) related to coagulation function levels and interleukin 1ß (IL-1ß), interleukin 17 (IL-17) related to serum inflammatory cytokines levels of patients in the infection group were higher than those in non-infection groups (p< 0.05). Multiple linear regression analysis uncovered that FIB, D-D, PLT, and IL-17 were influencing factors of pulmonary infection in the sequelae of patients with hemorrhagic stroke (p< 0.05). Area under the curve (AUC) values of pulmonary infection in the sequelae stage of patients with hemorrhagic stroke diagnosed by FIB, D-D, PLT, and IL-17 were 0.823, 0.758, 0.660, and 0.755, respectively. CONCLUSION: FIB, D-D, PLT, and IL-17 levels could be used for pulmonary infection diagnosis in the sequelae stage of hemorrhagic stroke patients.

12.
Int J Mol Sci ; 24(17)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37686464

ABSTRACT

The SPL (SQUAMOSA-promoter binding protein-like) gene family is one of the largest plant transcription factors and is known to be involved in the regulation of plant growth, development, and stress responses. The genome-wide analysis of SPL gene members in a diverse range of crops has been elucidated. However, none of the genome-wide studies on the SPL gene family have been carried out for oil palm, an important oil-yielding plant. In this research, a total of 24 EgSPL genes were identified via a genome-wide approach. Phylogenetic analysis revealed that most of the EgSPLs are closely related to the Arabidopsis and rice SPL gene members. EgSPL genes were mapped onto the only nine chromosomes of the oil palm genome. Motif analysis revealed conservation of the SBP domain and the occurrence of 1-10 motifs in EgSPL gene members. Gene duplication analysis demonstrated the tandem duplication of SPL members in the oil palm genome. Heatmap analysis indicated the significant expression of SPL genes in shoot and flower organs of oil palm plants. Among the identified EgSPL genes, a total 14 EgSPLs were shown to be targets of miR156. Real-time PCR analysis of 14 SPL genes showed that most of the EgSPL genes were more highly expressed in female and male inflorescences of oil palm plants than in vegetative tissues. Altogether, the present study revealed the significant role of EgSPL genes in inflorescence development.


Subject(s)
Arabidopsis , Arecaceae , MicroRNAs , Olea , Phylogeny , Arecaceae/genetics , Genitalia , Crops, Agricultural , MicroRNAs/genetics
13.
Metabolites ; 13(6)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37367885

ABSTRACT

The fruit of the oil palm (Elaeis guineensis Jacq.) has fleshy mesocarpic tissue rich in lipids. This edible vegetable oil is economically and nutritionally significant across the world. The core concepts of oil biosynthesis in oil palms remain to be researched as the knowledge of oil biosynthesis in plants improves. In this study, we utilized a metabolite approach and mass spectral analysis to characterize metabolite changes and identify the sequences of protein accumulation during the physiological processes that regulate oil synthesis during oil palm fruit ripening. Here, we performed a comprehensive lipidomic data analysis in order to understand the role of lipid metabolism in oil biosynthesis mechanisms. The experimental materials were collected from the mesocarp of oil palm (Tenera) at 95 days (early accumulation of fatty acid, first stage), 125 days (rapid growth of fatty acid accumulation, second stage), and 185 days (stable period of fatty acid accumulation, third stage) after pollination. To gain a clear understanding of the lipid changes that occurred during the growth of the oil palm, the metabolome data were found using principal component analysis (PCA). Furthermore, the accumulations of diacylglycerols, ceramides, phosphatidylethanolamine, and phosphatidic acid varied between the developmental stages. Differentially expressed lipids were successfully identified and functionally classified using KEGG analysis. Proteins related to the metabolic pathway, glycerolipid metabolism, and glycerphospholipid metabolism were the most significantly changed proteins during fruit development. In this study, LC-MS analysis and evaluation of the lipid profile in different stages of oil palm were performed to gain insight into the regulatory mechanisms that enhance fruit quality and govern differences in lipid composition and biosynthesis.

14.
Pediatr Radiol ; 53(5): 920-928, 2023 05.
Article in English | MEDLINE | ID: mdl-36976339

ABSTRACT

BACKGROUND: At present, there is a lack of normal magnetic resonance imaging (MRI) morphometric reference values for fetal internal jugular veins during middle and late pregnancy. OBJECTIVE: We used MRI to assess the morphology and cross-sectional area of the internal jugular veins of fetuses during middle and late pregnancy and to explore the clinical value of these parameters. MATERIALS AND METHODS: The MRI images of 126 fetuses in middle and late pregnancy were retrospectively analysed to determine the optimal sequence for imaging the internal jugular veins. Morphological observation of the fetal internal jugular veins in each gestational week was carried out, lumen cross-sectional area was measured and the relationship between these data and gestational age was analysed. RESULTS: The balanced steady-state free precession sequence was superior to other MRI sequences used for fetal imaging. The cross section of fetal internal jugular veins was predominantly circular in both the middle and late stages of pregnancy, however the prevalence of an oval cross section was significantly higher in the late gestational age group. The cross-sectional area of the lumen of the fetal internal jugular veins increased with increasing gestational age. Fetal jugular vein asymmetry was common, with the right jugular vein being dominant in the high gestational age group. CONCLUSION: We provide normal reference values for fetal internal jugular veins measured by MRI. These values may form the basis for clinical assessment of abnormal dilation or stenosis.


Subject(s)
Fetus , Jugular Veins , Female , Pregnancy , Humans , Jugular Veins/anatomy & histology , Jugular Veins/pathology , Retrospective Studies , Reference Values , Magnetic Resonance Imaging
15.
Medicine (Baltimore) ; 102(5): e32826, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36749234

ABSTRACT

BACKGROUND: MicroRNAs have been confirmed to function as diagnostic biomarkers for esophageal cancer (EC). This study aimed to investigate the diagnostic potential of miR-375 in the plasma or extracellular vesicles (EVs) of esophageal cancers (ECs). METHODS: miRNAs with diagnostic potential were identified through public database searches and validated through clinical sample testing. The diagnostic value of miR-375 in plasma and EVs was evaluated via receiver operating characteristic analysis and area under the curve. In addition, expression and survival analyses of the top ten target genes of miR-375 were conducted using the cancer genome atlas database. RESULTS: MiR-375 was identified as a potential biomarker for ECs by searching the gene expression omnibus database. Results of clinical sample measurements showed that miR-375 in plasma or EVs was significantly different between ECs and controls ( P < .01), but did not differ by gender or age. receiver operating characteristic analysis demonstrated that miR-375 in EVs could function as a diagnostic marker for ECs, with a higher area under the curve (0.852) than that in plasma. The expression and survival analysis of the top ten target genes for miR-375 showed that only EIF4G3 was significantly associated with survival ( P < .05). CONCLUSION: This research shows that miR-375, particularly in EVs, could serve as a biomarker for the diagnosis of ECs.


Subject(s)
Esophageal Neoplasms , Extracellular Vesicles , MicroRNAs , Humans , Biomarkers, Tumor/metabolism , MicroRNAs/genetics , Esophageal Neoplasms/genetics , Extracellular Vesicles/genetics
17.
Macromol Rapid Commun ; 44(3): e2200657, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36128639

ABSTRACT

Recent years have witnessed the rapid development of self-healing and recyclable materials because they can extend the life of the material. For polysiloxane materials, exploring polysiloxanes with high-strength and self-healing properties remains a challenge. In this work, a high-strength and self-healing polysiloxane containing N-acetyl-L-cysteine (NACL) side groups is prepared. The NACL is used to form strong hydrogen bonds to build a self-healing network. Molecular simulations help explain the reasons and processes for the repair of modified polysiloxanes. On the one hand, the obtained modified polysiloxanes have good self-healing properties. The self-healing efficiency of modified polysiloxane can reach 96.9%. As the number of NACL increases, the tensile strength of the modified polysiloxane increases. For PMVS-30%NACL, the tensile strength can reach 4.36 MPa, and the strain can reach 586%. On the other hand, modified polysiloxane has an apparent inhibitory effect on Staphylococcus aureus. With the increase in the number of NACL, the antibacterial effect of modified polysiloxane is more obvious. Furthermore, NACL is a bio-based amino acid with excellent biocompatibility. This work expands the idea of designing and synthesizing high-strength polysiloxanes with antibacterial properties. It has great potential in the field of polysiloxane antimicrobial coatings.


Subject(s)
Amino Acids , Siloxanes , Siloxanes/chemistry , Hydrogen Bonding , Sodium Chloride , Anti-Bacterial Agents/chemistry , Acetylcysteine
18.
Front Plant Sci ; 14: 1263595, 2023.
Article in English | MEDLINE | ID: mdl-38288415

ABSTRACT

MYB transcription factors regulate the growth, development, and secondary metabolism of plant species. To investigate the origin of color variations in coconut pericarp, we identified and analyzed the MYB gene family present in coconut. According to the sequence of MYB genes in Arabidopsis thaliana, homologous MYB gene sequences were found in the whole genome database of coconut, the conserved sequence motifs within MYB proteins were analyzed by Motif Elicitation (MEME) tool, and the sequences without conservative structure were eliminated. Additionally, we employed RNA-seq technology to generate gene expression signatures of the R2R3-MYB genes across distinctive coconut parts exhibiting diverse colors. To validate these profiles, we conducted quantitative PCR (qPCR). Through comprehensive genome-wide screening, we successfully identified a collection of 179 MYB genes in coconut. Subsequent phylogenetic analysis categorized these 179 coconut MYB genes into 4-subfamilies: 124 R2R3-MYB, 4 3R-MYB types, 4 4R-MYB type, and 47 unknown types. Furthermore, these genes were further divided into 34 subgroups, with 28 of these subgroups successfully classified into known subfamilies found in Arabidopsis thaliana. By mapping the CnMYB genes onto the 16 chromosomes of the coconut genome, we unveiled a collinearity association between them. Moreover, a preservation of gene structure and motif distribution was observed across the CnMYB genes. Our research encompassed a thorough investigation of the R2R3-MYB genes present in the coconut genome, including the chromosomal localization, gene assembly, conserved regions, phylogenetic associations, and promoter cis-acting elements of the studied genes. Our findings revealed a collection of 12 R2R3-MYB candidate genes, namely CnMYB8, CnMYB15, CnMYB27, CnMYB28, CnMYB61, CnMYB63, CnMYB68, CnMYB94, CnMYB101, CnMYB150, CnMYB153, and CnMYB164. These genes showed differential expressions in diverse tissues and developmental stages of four coconut species, such as CnMYB68, CnMYB101, and CnMYB28 exhibited high expression in majority of tissues and coconut species, while CnMYB94 and CnMYB164 showed lower expression. These findings shed light on the crucial functional divergence of CnMYB genes across various coconut tissues, suggesting these genes as promising candidate genes for facilitating color development in this important crop.

19.
Int J Mol Sci ; 23(23)2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36499255

ABSTRACT

Oil palm (Elaeis guineensis Jacq.) is an economically important tropical oil crop widely cultivated in tropical zones worldwide. Being a tropical crop, low-temperature stress adversely affects the oil palm. However, integrative leaf transcriptomic and proteomic analyses have not yet been conducted on an oil palm crop under cold stress. In this study, integrative omics transcriptomic and iTRAQ-based proteomic approaches were employed for three oil palm varieties, i.e., B × E (Bamenda × Ekona), O × G (E. oleifera × Elaeis guineensis), and T × E (Tanzania × Ekona), in response to low-temperature stress. In response to low-temperature stress at (8 °C) for 5 days, a total of 5175 up- and 2941 downregulated DEGs in BE-0_VS_BE-5, and a total of 3468 up- and 2443 downregulated DEGs for OG-0_VS_OG-5, and 3667 up- and 2151 downregulated DEGs for TE-0_VS_TE-5 were identified. iTRAQ-based proteomic analysis showed 349 up- and 657 downregulated DEPs for BE-0_VS_BE-5, 372 up- and 264 downregulated DEPs for OG-0_VS_OG-5, and 500 up- and 321 downregulated DEPs for TE-0_VS_TE-5 compared to control samples treated at 28 °C and 8 °C, respectively. The KEGG pathway correlation of oil palm has shown that the metabolic synthesis and biosynthesis of secondary metabolites pathways were significantly enriched in the transcriptome and proteome of the oil palm varieties. The correlation expression pattern revealed that TE-0_VS_TE-5 is highly expressed and BE-0_VS_BE-5 is suppressed in both the transcriptome and proteome in response to low temperature. Furthermore, numerous transcription factors (TFs) were found that may regulate cold acclimation in three oil palm varieties at low temperatures. Moreover, this study identified proteins involved in stresses (abiotic, biotic, oxidative, and heat shock), photosynthesis, and respiration in iTRAQ-based proteomic analysis of three oil palm varieties. The increased abundance of stress-responsive proteins and decreased abundance of photosynthesis-related proteins suggest that the TE variety may become cold-resistant in response to low-temperature stress. This study may provide a basis for understanding the molecular mechanism for the adaptation of oil palm varieties in response to low-temperature stress in China.


Subject(s)
Arecaceae , Proteomics , Cold Temperature , Arecaceae/genetics , Arecaceae/metabolism , Transcriptome , Cold-Shock Response/genetics , Proteome/genetics , Proteome/metabolism , Gene Expression Regulation, Plant , Palm Oil
20.
Pathol Oncol Res ; 28: 1610554, 2022.
Article in English | MEDLINE | ID: mdl-36110252

ABSTRACT

Identification of novel biomarkers is helpful for the diagnosis and treatment of cervical cancer. Mucin glycosylating enzyme GALNT2 modulates mucin O-glycosylation, and has been revealed as a regulator of tumorigenesis in various cancers. However, the expression pattern of GALNT2 in cervical cancer is still unclear. In this study, we demonstrated that the mRNA expression and protein level of GALNT2 were increased in cervical high-grade intraepithelial neoplasia and tumor tissues compared with normal cervix tissues. Kaplan-Meier plotter showed that overexpression of GALNT2 was associated with worse overall survival in TCGA cohort (p < 0.001, HR = 2.65, 95% CI = 1.62-4.34) and poor disease free survival in GSE44001 cohort (p = 0.0218, HR = 2.15, 95% CI = 1.14-4.06). In addition, GSEA analysis showed that various immune-related pathways were closely related to the expression of GALNT2 in cervical cancer. Moreover, co-expression of GALNT2 and IL1A, IL1B, IL11, CXCL1, CXCL2, CXCL5, CXCL6, CXCR1, or CCR3 predicted poor overall survival, and the expression of GALNT2 also affected the prognostic value of CD47, CD274, CD276, CSF1R, TNFSF9, and TNFSF11 in cervical cancer patients. These findings suggest that GALNT2 might be used as a prognostic biomarker in cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , B7 Antigens , CD47 Antigen , Female , Humans , Interleukin-11 , Mucins/metabolism , N-Acetylgalactosaminyltransferases/genetics , Prognosis , RNA, Messenger/genetics , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Polypeptide N-acetylgalactosaminyltransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...